95 research outputs found

    Antarctic sea ice trophic status

    Get PDF
    This study focuses on analyses and validation of 1 month forecasts (OMFs) of weak Indian monsoons based on 10 member ensemble hindcasts (retrospective forecasts) of the NCEP Climate Forecast System (CFS) model for the period 1981–2008. The weak monsoon episodes chosen for the analysis correspond to summer monsoon months which were characterized by significant deficits in the All-India monthly rainfall of − 20% of the climatological normal. Examination of the CFS-OMFs shows poor skill of the model in capturing the observed rainfall and circulation anomalies during weak monsoons. The present analysis suggests that deficiencies in realistically capturing the ocean-atmosphere coupling in the tropical Indian Ocean (IO) introduces biases in simulating sea surface temperature and rainfall anomalies in the equatorial region, which in turn affects the monsoon precipitation forecasts over the sub-continent. In particular, the mean thermocline in the near-equatorial IO is found to be practically flat in the CFS model, so that the near-equatorial anomalies in the model are not strong enough to weaken the summer monsoon circulation and reduce the monsoon precipitation over India. By examining a 100 year free run of the CFS model, it is seen that moderate monsoon-droughts simulated by the model have weak teleconnections with the equatorial IO dynamics. On the other hand, intense monsoon-droughts in the CFS-model are found be remarkably linked with the equatorial IO anomalies. It is suggested that improving the slope of the equatorial IO thermocline and allowing for more realistic IO-monsoon coupling in the CFS-model would be an important step for improving the skill of extended-range monsoon forecasts

    Standardisation of eddy-covariance flux measurements of methane and nitrous oxide

    Get PDF
    Commercially available fast-response analysers for methane (CH4) and nitrous oxide (N2O) have recently become more sensitive, more robust and easier to operate. This has made their application for long-term flux measurements with the eddycovariance method more feasible. Unlike for carbon dioxide (CO2) and water vapour (H2O), there have so far been no guidelines on how to optimise and standardise the measurements. This paper reviews the state-of-the-art of the various steps of the measurements and discusses aspects such as instrument selection, setup and maintenance, data processing as well as the additional measurements needed to aid interpretation and gap-filling. It presents the methodological protocol for eddy covariance measurements of CH4 and N2O fluxes as agreed for the ecosystem station network of the pan-European Research Infrastructure Integrated Carbon Observation System and provides a first international standard that is suggested to be adopted more widely. Fluxes can be episodic and the processes controlling the fluxes are complex, preventing simple mechanistic gap-filling strategies. Fluxes are often near or below the detection limit, requiring additional care during data processing. The protocol sets out the best practice for these conditions to avoid biasing the results and long-term budgets. It summarises the current approach to gap-filling.Peer reviewe

    Atmospheric deposition, CO2, and change in the land carbon sink

    Get PDF
    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.Peer reviewe

    Winter respiratory C losses provide explanatory power for net ecosystem productivity

    Get PDF
    Accurate predictions of net ecosystem productivity (NEPc) of forest ecosystems are essential for climate change decisions and requirements in the context of national forest growth and greenhouse gas inventories. However, drivers and underlying mechanisms determining NEPc (e.g., climate and nutrients) are not entirely understood yet, particularly when considering the influence of past periods. Here we explored the explanatory power of the compensation day (cDOY)defined as the day of year when winter net carbon losses are compensated by spring assimilationfor NEPc in 26 forests in Europe, North America, and Australia, using different NEPc integration methods. We found cDOY to be a particularly powerful predictor for NEPc of temperate evergreen needleleaf forests (R-2=0.58) and deciduous broadleaf forests (R-2=0.68). In general, the latest cDOY correlated with the lowest NEPc. The explanatory power of cDOY depended on the integration method for NEPc, forest type, and whether the site had a distinct winter net respiratory carbon loss or not. The integration methods starting in autumn led to better predictions of NEPc from cDOY then the classical calendar method starting 1 January. Limited explanatory power of cDOY for NEPc was found for warmer sites with no distinct winter respiratory loss period. Our findings highlight the importance of the influence of winter processes and the delayed responses of previous seasons' climatic conditions on current year's NEPc. Such carry-over effects may contain information from climatic conditions, carbon storage levels, and hydraulic traits of several years back in time.Peer reviewe

    Quality Control of CarboEurope Flux Data - Part I: Coupling Footprint Analyses with Flux Data Quality Assessment to Evaluate Sites in Forest Ecosystems

    Get PDF
    We applied a site evaluation approach combining Lagrangian Stochastic footprint modelling with a quality assessment approach for eddy-covariance data to 25 forested sites of the CarboEurope-IP network. The analysis addresses the spatial representativeness 5 of the flux measurements, instrumental effects on data quality, spatial patterns in the data quality, and the performance of the coordinate rotation method. Our findings demonstrate that application of a footprint filter could strengthen the CarboEurope-IP flux database, since only one third of the sites is situated in truly homogeneous terrain. Almost half of the sites experience a significant reduction in eddy-covariance data 10 quality under certain conditions, though these effects are mostly constricted to a small portion of the dataset. Reductions in data quality of the sensible heat flux are mostly induced by characteristics of the surrounding terrain, while the latent heat flux is subject to instrumentation-related problems. The Planar-Fit coordinate rotation proved to be a reliable tool for the majority of the sites using only a single set of rotation angles. 15 Overall, we found a high average data quality for the CarboEurope-IP network, with good representativeness of the measurement data for the specified target land cover types.JRC.H.2-Air and Climat

    Quality control of CarboEurope flux data – Part I: Footprint analyses to evaluate sites in forest ecosystems

    No full text
    International audienceWe applied a site evaluation approach combining Lagrangian Stochastic footprint modelling with a quality assessment approach for eddy-covariance data to 25 forested sites of the CarboEurope-IP network. The analysis addresses the spatial representativeness of the flux measurements, instrumental effects on data quality, spatial patterns in the data quality, and the performance of the coordinate rotation method. Our findings demonstrate that application of a footprint filter could strengthen the CarboEurope-IP flux database, since only one third of the sites is situated in truly homogeneous terrain. Almost half of the sites experience a significant reduction in eddy-covariance data quality under certain conditions, though these effects are mostly constricted to a small portion of the dataset. Reductions in data quality of the sensible heat flux are mostly induced by characteristics of the surrounding terrain, while the latent heat flux is subject to instrumentation-related problems. The Planar-Fit coordinate rotation proved to be a reliable tool for the majority of the sites using only a single set of rotation angles. Overall, we found a high average data quality for the CarboEurope-IP network, with good representativeness of the measurement data for the specified target land cover types

    Low-flow analysis of the rivers in the Ljubljanica watershed

    Get PDF
    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich information content of micrometeorological flux measurements
    • …
    corecore